
From Research to Operations: Integrating Components of
an Advanced Diagnostic System with an Aspect-Oriented

Framework192
Daryl P. Fletcher

Science Applications International Corporation (SAIC)
NASA Ames Research Center

Moffet Field, CA. 94035

dpfl etcher@mail.arc.nasa.gov
Richard L. Alena

NASA Ames Research Center
Moffet Field, CA. 94035

Ric1iard.L.A Iena@,nasa.gov

650-604-0 159

650-604-0262

Abstract-Bringing technology fiom the research world
into an operational environment poses many challenges.
Typically, software systems having their origins in low
Technical Readiness Level research projects have few, if
any, formal requirements associated with them. This
paucity of formal requirements coupled with &e
challenges associated with coordinating multiple,
distributed research-oriented software projects makes it
difficult to design and build software systems that will
ultimately be useful in an operational environment.

Targeted for current and next-generation space vehicles,
the diagnostic applications that compose the Advanced
Diagnostic System (ADS) under development in our lab
at NASA-Ames Research Center are realizations of
research projects associated with multiple organizations
and generally are not designed according to stringent
requirements nor with integration into the ADS
environment in mind. The core hnctionality of a
Diagnostic Client Application, usually having its basis in
artificial intelligence research, is the primary (and perhaps
sole) consideration of the application developer. Research
funds generally are not available for implementing aspects
such as logging and security, both of which are critical in
aerospace diagnostic systems such as the ADS. In order
to leverage funding sources and integrate these separate
research projects into a coherent whole suitable for
deployment in an operational environment, it is important
for the systems integrator to be able to easily (affordably)
weave these aspects into the software system.
Furthermore, Diagnostic Client Applications produce
knowledge products, such as subsystem state estimates,
that other applications within the ADS universe can use
to augment their awareness of the larger system with the

Faisal Akkawi
Illinois Institute of Technology

Chicago, IL. 606 16

ak kaw i fa i it . ed u
3 12-567-5 122

Daniel P. Duncavage
International Space Station Program

NASA Johnson Space Center
Houston, TX. 77058

DanieI.P.Duncava,oe@nasa.gov
28 1-792-5478

g=al cf generally increasing the effectiveness of the -4DS.
Taking a holistic approach to knowledge sharing in a

software system developed by multiple, loosely-coupled
research projects poses a challenge to the systems
integrator that goes beyond fundamental inter-process
communication issues. However, the challenge can be
met and the goal of a more effective ADS can be achieved
through the use of emerging data representation
technologies.

Aspect-Oriented Programming (AOP) is a new software
development methodology that complements Object-
Oriented Programming and addresses the complexity of
software systems by achieving a separation of functional
and interaction components (aspects). Aspects such as
logging and security are defined as properties that cut
across groups of functional components (diagnostic
applications). Aspects can be thought about and analyzed
separately liom each other and fiom the core functionality
of the software system. AOP provides the modular
separation of crosscutting concerns, where the aspect code
is scatteredtangled throughout the software system. An
AOP Framework takes advantage of what AOP provides
and enables us to build software systems that can be
extended and adapted during runtime.

In this paper we present an AOP Framework for
integrating software components into an Advanced
(artificial intelligence-based) Diagnostic System and
introduce a basic ontology for sharing knowledge between
a community of diagnostic applications (agents). The
ontology and AO? Framework can be appiieci to ine
development of diagnostic and prognostic decision
support systems for current as well as next-generation

' U.S. Government work not protected by U S . copyright.
* IEEEAC paper #1333, Version 1, Updated August 27,2003

1

space vehicles such as the International Space Station and
Orbital Space Plane.

Weaver Framework architecture in sufficient detail to give
the reader a basic understanding of its usage. A more in-

TABLE OF CONTENTS

............................
1 . I NTR (31) I ICTI OE 2
2. TIHI: D\”)I/\I\.IIC WICAVER FIL\I\.IIC\VOI<K 2
3. A D S COwi’oNi~w I Y - I X G I U T I O K UslNc;

-1.1-I I: DJ’x:\ \ I I C w 13A \’ I: I<

FIL\ME~W”K 6

5. CoNclAtjstoi\: 13
Rk:imEI\‘ck:s13

4. SI-I.L\I<ING KNO\VI,EI)GE IN .I .I-IIC ADS , . . . lo

BIOCII:\PI-I V I4

1. INTRODUCTION

Software development and maintenance is a major cost
center of current projects in the NASA International Space
Station (ISS) Program, yet the final requirements for
software are never complete before the majority of the
software has been written. This situation is the result of a
number of driving forces and is likely to become even
more acute in next generation systems. The nature of
NASA projects drives us into new realms of design and
therefore unforeseeable problems, which result in changes
to software. In addition to requirements that change as a
result of technological unknowns, the evolution of
security policies and application traceability/transparency
requirements impact the software development process.
These changes to requirements, as well as typical defect
corrections, drive costs both during the designhuildltest
phase and in the sustaining engineering phase.

To address the issues of vague and/or changing
requirements in a complex software development project
such as the Advanced Diagnostic System (ADS), we use
Aspect-Oriented Programming (AOP) [l , 2, 3, 4, 5 , 6, 71
methodology to separate a program’s functional
components fkom the interaction components (aspects).
Aspects are defined as properties that cut across groups of
functional components. While these aspects can be
thought about and analyzed relatively separately from the
basic functionality, at the implementation level they must
be combined together. Programming them manually into
the system’s functionality using current component-
oriented languages results in aspects being spread
throughout the code. This code tangling makes the
source code difficult to develop, understand and evolve
because it destroys modularity and reduces software
quality [6] . In this paper we show how to deploy aspect-
oriented technology, which provides an architectural
support for the design and development of intelligent
concurrent systems. We show how the aspect code can be
isolated from the functional components that otherwise
would be intermingled with the code of the functional
components. Isolating the functional components from
the non-functional components, the aspect code, has many

2

2. THE DYNAMIC WEAVER FRAMEWORK

The Dynamic Weaver Framework (DWF) is an aspect
oriented language independent framework. It achieves the
separation of concerns by separating the properties of the

system such as logging, security, scheduling, etc., from
the fimctionality of the system then it weaves them
together at run time to achieve the overall application
system. The DWF employs Java reflection to use the
dynamic proxy[4] in order to achieve dynamic
adaptability at run time. In this fiamework, aspects can
be added and removed from the system during run time
without the need to take the system down to recompile
the code. The framework has the ability to attacwdetach
any aspect to/fi-om the running system, establish
communication between any two modules in the system,
or redirect communication from one component to the
other.

The DWF enables applications to adapt to environmental
changes at run time, because components and aspects are
independent of each other and they are woven into the
system at run time. The components and the aspects in
the DWF must have a predefined interface, but the users
are free to change the class implementation at run time.
The DWF provides us with the capability of adding and
removing aspects as well as “point cuts” during runtime.
This capability will enable us to support reconfigurability
and dynamically adapt to changes in the deployment
environment with minimal impact on the running system.

The Dynamic Weaver Framework has the following
advantages:

1. We achieve a high level of abstraction since the
designer makes the programmer’s job easier by reasoning
about individual concerns in isolation from each other.

2 . Concern reuse. Separation of crosscutting concerns
provides the software with a loose coupling between the
different concerns, achieving the usability of a single
concern.

3. No restrictions are imposed by the software application
specification. In aspect-oriented software development,
software applications must define when they are going to
be adapted at run time by specifying the ‘tjoin points”. In
the DWF, the software application is adaptable at run
time a&ts structure can be inspected and dynamically
customized, obviating the need to specify what might be
adapted and at what time.

4. The DWF is a language independent framework. The
system or the software application may be programmed
using any language.

5 . Application concerns are defined at design level and
not at the language or the programming language level,
which provides a ioose coupiing between the design and
the implementation, making an aspect more reusable.

6. The DWF achieves a full separation between the
functional code and the reusable aspects, which avoids the
tangling of application source code, achieving ease of
maintenance and adaptation of applications to a new
aspect.

‘“c,

Ln general, the aspect-oriented paradigm has the following
elements:

Aspect: The modular representation for a cross-
cutting concern. A concern may cross-cut one or
more components; security and logging are examples
of cross-cutting concerns.
Core functional component: A set of software
modules that together contribute to the basic identity
of the larger system.
Weaver: The engine that weaves aspects along with
their respective core functional components.
Join point: Determines the granularity of the
weaving process. In the DWF it is at the method call
level.
Point cut: An aspect may have different
implementations for different methods; a point-cut
represents the specific aspect implementation that
will be associated with a specific method(s) of the
core functional components. For example, different
security policies may be applied to different methods
defined in the same component.
Advice: The actual code that will be executed when
the control flow reaches the join-points.

Dynamic Weaver Framework Architecture

In this section we provide an overview of the main DWF
components. A complete description of the ?WF
components can be found in the DWF documentation .

Aspect Weaver-The Aspectweaver class takes advantage
of the dynamic proxy [4] capability in Java 1.3. The
fiamework structure is depicted in the class diagram in
Figure 1. Each class uses a dynamic proxy class, which
represents the aspect weaver class. A software system has
a number of aspects, and each aspect has a number of
point cuts. Each point cut has an advice class containing
the two methods beforeAdvice0 and aRerAdvice0 that
will be executed when control reaches the join points.
The semantics of aspect, point cut, and advice are similar
to the ones cited in AspectJ6.

The Aspectweaver weaves classes and their perspective
aspects at runtime. The Aspectweaver intercepts messages
coming to the component and redirects them to the
AspectRepository. The AspectRepository stores
information about the aspect(s) (e.g. scheduling,
synchronization, security.. .) and the order in which they
have to be executed. The DWF has a loose coupling
between the component and the aspects, because the
component and the aspects do not have direct references
between them.

The Aspectweaver interacts with the clients and does the
actual weaving of aspects while the application is
running. All communication between the functional

’ The DWF and documentation will be available for download in early
2004. ‘ ~ c ~ i n s c Proiccts-/\socct.I

3

t

,

components and the aspects of the system is
accomplished through the Aspectweaver class.

As mentioned above the Aspectweaver is a dynamic
proxy, which directly interacts with the clients and does
the actual weaving of aspects while the application is
running. Whenever a client calls an aspect method, the
Aspectweaver executes the invoke method in the
Aspectweaver class. The invoke method in turn executes
the AspectRepository’s beforeAdvice0 method. If the call
is successful, the actual operation will be executed. When
the task is finished, the Aspectweaver will invoke the
afterAdvice0 method in the AspectRespository.

In summary, the Aspectweaver class plays two roles in
the DWF. First, it intercepts every method called by the
system and redirects communication to the
AspectRepository by invoking the beforeAdviceO method
of the AspectRespository. Second, The Aspectweaver
class is responsible for weaving aspects into core
functional components at run time.

Aspect Repository-As mentioned in the Aspectweaver
class, every method call to the component is intercepted
by the Aspectweaver. The Aspectweaver then delegates
responsibility to the AspectRepository to evaluate a set of
conditions by invoking its beforeAdvice0 method. The
AspectRepository then evaluates all required aspects of
the calling method. Upon successful return of the
beforeAdvice0 method, a value of RESUME will be
returned to the Aspectweaver in which the Aspectweaver
then invokes the method on the core functional
component itself. Upon the completion of the execution
of the method the Aspectweaver will invoke the
afterAdvice0 method in the AspectRespository.

Aspect Table-The AspectTable is implemented using a
hash and resides in the AspectRespository class. It
contains all aspects that have been registered in the
framework and is used only in the AspectRepository.
Initially the AspectTable is empty and is subsequently
loaded with an aspect by calling the addAspect0 method
in the AspectRespository.

The addAspect() method will insert any aspect name thzt
you provide to the system into the AspectTable along
with an index and an object that contains the actual
aspect. Similarly, removing an aspect fi-om the
AspectTable can be done by calling the removeAspect()
method in the AspectRepository class.

Aspects-An AspectTable can contain multiple Aspect
objjects zxd each Asgect can contain multiple Pointcuts.
We represent an aspect object as a hash table that exists in
the AspectTable. Every time an aspect is added to the
AspectTable a new hash table is instantiated and inserted
into a new row in the AspectTable inside the
AspectRepository. Each aspect can contain multiple
Pointcuts and every Pointcut n a y contain one or more

Point cuts-An Aspect can contain multiple Pointcut
objects and each Pointcut can contain multiple Advices.
The method addAdvice() is used for adding a new advice.
The removeAdvice0 method removes an advice from a
given Pointcut. The beforeAdvice0 and afterAdvice0
methods are invoked by the corresponding Aspect’s
methods of the same name.

Advices-The actual behavior of each aspect is provided
by an object whose interface is defined by AdviceIF.
They will be woven during runtime by the dynamic
proxy, i.e., Aspectweaver. The beforeAdvice0 method
returns one of the integer constants defmed in the
AspectRepository; RESUME, BLOCK, and ABORT.

delete0 bserverO

I notify0 bserverso I setchangedo The Dynamic Weaver Framework

e uses= Aspect Repository t,
. . I

a ddAspect0
removeAspect0
add Policy0
removePolicy0
c hangePolicy0
b eforeAdvic e 0
afferAdvice0

I
If Aspect Table

hasAspectO
getAspectO
addAspectO
removeAspe ctO

Preference +---
enqueue0

* addAdvice0
Aspect spectWeaver

<<interface>>
ComponentlF

I

addPointcutO
removePointcutO
beforeAdvice0
aff erAdvic e0

1 beforeAdvice0
' afterAdviceO

beforeAdvic e 0-
afferAdviceO

<<interface>>
de queue 0
b efo reAdvi c e 0

affe rAdvic e 0 afferAdviceO

Figure 1 : Dynamic Weaver Framework class diagram

5

,

3. ADS COMPONENT INTEGRATION USING THE

DYNAMIC WEAVER FRAMEWORK

The Advanced Diagnostic System (ADS) under
development in the Intelligent Mobile Technologies
(IMT) Lab at NASA-Ames Research Center [I31 is an
intelligent decision support system for current and next-
generation space vehicles such the International Space
Station (ISS) and Orbital Space Plane (OSP). In the
following sections we show how ADS development can
benefit from using the Dynamic Weaver Framework for
integrating components into the ADS ecosystem.

The Diagnostic Client Applications (DCAs) that compose
the ADS are realizations of research projects associated
with multiple organizations and generally are not
designed according to stringent requirements nor with
integration into the ADS in mind. The core hnctionality
of a DCA, usually having its basis in artificial
intelligence research, is the primary (and perhaps sole)
consideration of the DCA developer. Research funds
generally are not available for implementing aspects such
as logging, debugging or security, all of which are critical
in a flight-qualified system such as the ADS.
Furthermore, the logging and security requirements are
not well understood at design time and are likely to
evolve throughout the development and maintenance
phases. It is therefore important for the systems integrator
to be able to easily (affordably) weave these aspects into
the system, even after the system has been deployed on-
orbit.

Advanced Diagnostic System Overview

The ISS ADS architecture is summarized in the following
figure:

C&C MOM HRDL Current Value Table

On-board /DCEJ On-board
i

I- Systun

pEq

-
IDCAI] [OCA51 jDCA6j

Figure 2: ISS Advanced Oiagnostic System Architecture

The Advanced Diagnostic System is composed of a
number of Diagnostic Client Applications (DCAs) that
reside both on board and on the ground. The DCAs
obtain pre-processed avionics data from the on-board

Diagnostic Data Server (DDS) using a pubiish/subscribe
architecture. Diagnostic clients are generally artificial
intelligence-based applications such as artificial neural
networks: Bayesian belief networks, fuzzy cognitive maps
and model-based reasoners that integrate data across sub-
systems. The collaborative product of the DCAs IS the
Advanced Diagnostic System, a decision support tool
targeted for use by crew, flight controllers and back-room
engineering groups on the ground.

The DDS inputs are provided by Data Collection Engines
(DCEs) that interact directly with trusted, lower-level
avionics components such as MIL-STD 1553 data buses
and the Command - and Control
Multiplexer/Demultiplexer (MDM) Current Value Table,
a shared memory construct of the ISS Command and
Control Software. Core DDS functions create derived
data products, such as Caution and Warning messages,
and make them available to DCAs through a
publishhbscribe architecture. A DCA can share data
products with its peers using the DDS publish/subscribe
mechanism.

The MIL-STD 1553 protocol used for the data bus on the
ISS is a synchronous, deterministic protocol that uses
three data rates to transport parameters throughout the
C&C system: 10 Hz, 1 Hz and 0.1 Hz. The DCEs that
interact with the MIL-STD 1553 buses must process the
raw data within the boundaries of these three data rates
and are therefore hard real-time tasks. The pre-processing
functions associated with the DDS can buffer data coining
from the DCEs and are categorized as soft real-time tasks.

Advanced Caution and Warning Diagnostic C‘lienl
Application Overview

In this section, we focus on a the Advanced CauTion and
Warning (ACW) Diagnostic Client Application (DCA),
composed of an alarm filtering function, implemented as
an Artificial Neural Network (ANN) and an alarm
correlation function, implemented as a Bayesian Network
@”.
Fault detection and isolation (FDI) is a function of the
Advanced Diagnostic System that uses messages (alarms)
created by the Caution and Warning software of the
complex system under management (diagnosis). These
caution and warning messages are pubiished to a
subscriber DCA (the Advanced Caution and Warning
filtering function) by the Diagnostic Data Server. In a
complex system such as the International Space Station or
Orbital Space Plane, a component or subsystem fault
event can generate tens, hundreds or even thousands of
alarms (an ‘alarm storm’), some significant percentage of
which may not be related to the root cause of the fault
event. Operations personnel, either through training or
experience, can visually filter some portion of the
unrelated alarms (noise) in order to reduce the sample
space of probable root causes (isolation). Time is usually

‘ Also called a beliefnehvork or causal nenvork

4

critical during FDI activities and the Advanced Caution
and Warning filtering function reduces the noise in the
alarm stream, aiming to reduce the time required for FDI.
Once the noise has been filtered from the alarm set, alarm
correlation can be performed either by a human or
automated process. When an automated process such as a
Bayesian Network is used for alarm correlation, the ACW
filtering function acts as a preprocessor to reduce the size
of the input vector, thereby speeding up convergence.

A supervised learning technique is used to train the ANN
alarm filter to recognize and filter extraneous alarms based
on the current state (mode) of the ISS. For instance,
when the ISS mode transitions fiom “Standard” to
“Proximity Operations” in preparation for a planned
docking event, certain nuisance alarms are generated that
can be safely filtered from the alarm stream. An
operational benefit derived from this hnction is that these
nuisance alarms don’t have to manually suppressed (and
then reactivated) each time one of these extraneous alarm-
producing events occur. This manual
deactivationheactivation of alarms is a potential safety
risk that we aim to mitigate with the ANN alarm filter.

A Bayesian Network is a directed acyclic graph’ where
the nodes represent random variables and the arcs
represent the probabilistic relationships between them.
The parents of a node Xare those variables that are judged
to be direct causes of X or to have direct influence on X
[15]. A conditional probability is specified for each node
(variable) and the graph can be considered as representing
the joint probability distribution for all the variables.
Sterritt et.al. have shown that a Bayesian Belief Network
can be effectively used as part of an intelligent fault
management system for telecommunications networks and
the ADS BN alarm correlator DCA is largely based on the
work presented in that paper [161.

The Java Neural Network Simulator (JavaNNS910) is the
kernel of the ACW filtering function and JavaBayes”
provides the core inference engine for the alarm correlation
function.

8

9
A directed graph where no path starts and ends at the same vertex.
I. Fischer, F. Hennecke, C. Bannes, A.Zell: Java Neural Network

Simulator User Manual, Version 1.1, University of Tubingen
JavaNNS is Copyright (c) 1996-2001 JavaNSS Group, Wilhelm-

Schickard-Insfitute for Computer Science (WSI), University of
Tubingen, Sand 1, 72076 Tubingen, Germany.
I’ JavaBayes is distributed under the GNU General Public License.

10

I ISS State Vector j
ju I I

p P ‘
/ ’

BN Alarm Correlator

Figure 3: ACW DCA architecture

We integrate the ACW DCA into the ADS using the
Dynamic Weaver Framework. The ACW filtering function
and the Bayesian Network alarm correlator were designed
with minimal security and logging aspects, both of which
are important concerns for a system targeted for flight
qualification such as the ADS. Using the Dynamic
Weaver Framework, previously fl ight-qualified cross-
cutting concerns such as logging and security can be
woven into the ACW DCA at runtime thereby
eliminating the need to re-qualify these aspects resulting
in lower flight qualification costs. As requirements for
logging and security inevitably evolve, these cross-cutting
concerns can be handled separately from the core functions
of the ACW DCA.

A Fuzzy Cognitive Map Toolkit for Decision Support

In addition to the ACW DCA, the current ADS
architecture includes a Fuzzy Cognitive Map (FCM)
Toolkit that can be used for modeling complex,
dynamical systems.

A FCM [8, 91 is a fuzzy, signed directed graph with
feedback where the nodes represent conceprs and a directed
edge ei, measures how much concept C, causes Cj. A
time varying concept C,(t) measures the degree of
occurrence of some event, such as the degree to which i!
component has failed or the “strength” of subsystem
health, and can take on values in the fuzzy interval [0, I] .
The edges eij take on values in the fuzzy interval [- I , I]
where eij = 0 indicates no causality from Ci to Cj, e,, > 0
indicates causal correlation in the same direction (Cj
increases as C, increases or Cj decreases as Ci decreases)
and eij < 0 indicates negative causal correlation (Cj
decreases as C! increases or Cj increases as Ci decreases).
Operations on the graph can be performed using matrix-
vector operations.

Fuzzy Cognitive Maps differ from probabilistic decision
support systems such as Bayesian Belief Networks. In a
probabilisric context, when a random event occurs (such
as the event of “heads” when a coin is tossed), the event
occurs completely, i.e. the result of the experiment is

7

either entirely heads or entirely tails. Comparatively,
events in a FCM occur deterministically but to varying
degrees, such as “light rain” or “bright sunshine”. If a
fuzzy event is non-deterministic, we can integrate the two
approaches to create a compound statement describing the
probability of a fuzzy event, such as “a 20 percent chance
of light rain”.

A FCM is usually constructed by a knowledge engineer
who acquires domain knowledge from systems experts
and uses that knowledge to define the concepts, causal
directions and fuzzy values of the nodes and edges of the
graph. As an example, consider the High Level ISS
System Health Monitor DCA shown below implemented
as a FCM representing the causal relations of the fuzzy
concepts of Command and Data Handling (C&DH)
Subsystem health (C l), Electrical Power Subsystem
(EPS) health (C2), Thermal Control Subsystem (TCS)
health (Cj), Channel 2B battery low (C4) and Low
Temperature Loop (LTL) heat exchanger can’t reject heat
(C5):

I CLDH Health -1 EPS Health 1

I /
Channel 28
battery low

Figure 4: A High-level ISS Systems Health Monitor
DCA implemented as a Fuzzy Cognitive Map

Subsytem experts have different opinions regarding the
degree to which the health of one subsystem affects the
health of others. The knowledge engineer can conduct
multiple interviews with subsystem experts and combine
each of the resulting FCMs to construct a new FCM that
cumulatively embodies the knowledge of each of the
experts. A weighting function can be used to give more
weight to a FCM constructed from an interview with a
more experienced systems engineer and a lesser weight to
one constructed on advice from a less experienced systems
engineer. The resulting FCM is a linear combination of
the separate FCMs:

F = wiFi

Equation 1 : FCM combination

When the FCMs are combined, a threshold function is
used to map the connection values to the interval [-1, 11

and the concept values to the interval [0, I]. The example
FCM can be represented as a concept vector:

C,(O) = [1.0, 1.0, 1.0, 1.0, 0.11

Figure 5 : Initial FCM concept vector

and a connection (edge) matrix E:

Figure 6: FCM connection matrix for the FCM in Figure
4

The entries in the concept vector C(0) are initial estimates
of the concept values given the conditions that the LTL
Heat Exchanger has lost 10% of its heat rejection capacity
and the Channel 2B battery is completely discharged.
The entries in the connection matrix E are the result of
applying Equation 1 to a series of connection matrices
derived from interviews with multiple subsystem experts.

A FCM is a dynamical system that can simulate the
behavior of the process being modeled [141. Successive
matrix-vector multiplications are performed with the
output of one operation being used as the input to the
next. The FCM simulation will either diverge or
converge to a fixed point (a single vector) or limit cycle
(repeating pattern of vectors). While holding the
connection values fixed and “clamping” (firing) the C4
and C5 concepts to simulate the LTL Heat Exchanger and
Channel 2B battery failure modes, the FCM converges to
a new set of concept values:

C(t) = [0.83, 0.80, 0.78, 0.73, 0.731

Figure 7: FCM concept vector after iteration

These new equilibrium values for concepts C1, C2 and
C3 are interpreted as follows: given the causal relations
represented by the connection matrix and the initial
estimates of subsystem health, the computed health
measures for the C&DH, EPS and TCS subsystems are
83%, 80% and 78%, respectively, when failure conditions
C4 and C5 occur simultaneously. In another simulation,
firing C5 alone yields:

C(t) = [0.84, 0.84, 0.79, 0.0, 0.731

Figure 8: FCM concept vector after fault condition C4 is
removed

showing that the removal of fault condition C4 increases
C&DH health by one percent, EPS health by four percent

8

and TCS health by one percent. Removing fault
condition C5 yields similar results.

The FCM ‘Toolkit can be used to build more complex
models than the previous example and has a Differential
Hebbian Learning (DHL) hnction that can imply a
connection matrix from a time series of concept
observations. When the number of concepts being
modeled becomes large, the DHL function relieves the
user of having to construct a graphical FCM by hand and
simply uses recorded observations of each concept
individually, “learns” the causal strengths according to
changes in causation over time and automatically
produces a connection matrix that can be used as a model
for the complex system.

The ACW DCA, FCM Toolkit and the Dynamic Weaver
Framework

The kernel of the ACW artificial neural network (ANN)
filtering function, the Bayesian network (BN) core
inference engine of the alarm correlation function and the
computational engine of the FCM Toolkit are core
hc t iona l components of the ISS ADS. The ANN
filtering function receives input vectors of alarms from the
Diagnostic Data Server (DDS) and the BN correlation
function receives its input vectors from the ANN filtering
function. The BN then publishes its result set back to
DDS so that other ADS DCAs can subscribe to the
results of the belief network inference. Similarly, the
FCM Toolkit core computational engine produces result
vectors from ad-hoc simulations that may be of value to
other DCAs in the ADS ecosystem and data products of
other DCAs can provide useful knowledge for a given
FCM model. A security aspect associated with each core
functional component ensures that input data is coming
from a trusted source and a logging aspect supports
transparency so that the end user can see how a DCA has
come about its results.

Correlator

Diagnostic Data Server

Figure 9: DCA Crosscutting concerns (non-Aspect-
Oriented view)

From the above figure, it’s clear that the logging and
security aspects of the DCAs are scattered throughout the

core functional components of the ADS. The functional
requirements of these crosscutting concerns are likely to
evolve over time, both during the development phase and
later when the ADS has been flight qualified and
deployed on-orbit. Once a software system has been
deployed on orbit, changes to the running system are
difficult and expensive. Using the Dynamic Weave:
Framework (DWF) we aim to minimize the impact (cost)
that a security or logging requirements change will have
on the deployed system by achieving a separation between
the crosscutting concerns and the core functionality of a
DCA. This will allow us to make the code base that is
subject to change (and perhaps be re-qualified) as small as
possible. Furthermore, using the DWF, the system will
be able to adapt to changes dynamically at runtime,
eliminating the need to shutdown andor recompile the
operational system to accommodate new logging or
security requirements.

Aspects
Security
Logging

Diagnostic Data Server

Figure 10: Aspect-Oriented view of the ACW and FCM
DCAs

In the DWF, the Aspectweaver class weaves classes and
their perspective aspects, such as logging and security, at
runtime. In the case of the security aspect, the
Aspectweaver intercepts the input vector to the core
functional component an,d redirects it to the
AspectRepository. The AspectRepository stores
information about the logging and security aspects and
the order in which they have to be executed. The DWF
provides a loose coupling between the core functional
components and the aspects, because the components and
the aspects do not have direct references between them.
All communication between the core functional
components and the aspects of the system is
accomplished through the Aspectweaver class.

The Aspectweaver is a dynamic proxy that directly
interacts with the clients. In the security aspect, the
clients are the methods of the core functional components
that get input vectors from their buffers. In the logging
aspect, the clients are the methods of the core functional
components that write out log messages. Whenever a
client calls a logging or security method, the
Aspectweaver executes the corresponding invoke()
method in the Aspectweaver class. The invoke() method

9

then executes the AspectRepository’s beforeAdvice0
method. If the call is successful, the actual operation that
is a logging or security method will be executed. When
the method completes, the Aspectweaver will invoke the
afterAdvice0 method in the AspectRepository.

FCM Toolkit

getvector() e--
putLog0 e

Diagnostic Data
Server

getvector() e--
putLog0 6)

0 = Joln Poinl

I I

-
Logging Aspect

-- invoke() --

1 ANN Alarm Filter 1 I 1 7 1 Aspect Repository 1
getvector()

beforeAdvice0 - afterAdvice0

Figure 11: ACW and FZM DCAs in the Dynamic
Weaver Framework

By using the Dynamic Weaver Framework to integrate the
ACW and FCM DCAs into the ADS environment, we
enhance the adaptability of the system and simplify
integration of reusable aspects such as logging and
security. These benefits provided by the DWF will lessen
the impact and costs associated with implementing
unforeseeable changes to the theses important crosscutting
concerns during the designibuildltest and sustaining
engineering phases of the software life cycle. The trade-
off is a slight performance degradation due to the fact that
calls to aspect functions require the additional overhead of
making calls through the Aspectweaver rather than
directly invoking the aspect function themselves.

We’ve shown how using the DWF can simplify (and
hence lower the cost) of integrating a DCA into the ADS
architecture at the cost of a slight performance trade-off,
but what happens when disjoint DCAs want to share
knowledge about their particular domain? The Framework
doesn’t address the semantics of knowledge sharing and
reuse. In the next section, we introduce a basic ontology
that will address these issues within the ADS architecture.

4. SHARING KNOWLEDGE IN THE ADS

Within the ADS, diagnostic client applications produce
data products that are aefu! :a athe: c!ient app!icztions.
For instance, the FCM DCA produces an ephemeral
concept vector representkg the current state of certain
components within a given subsystem and the ACW
ANN Alarm Filter can use that subsystem state
information to augment its knowledge of the system
(included in the ISS state vector) in order to more
accurately filter extraneous alarms. If the ANN Alarm

Filter knows that pertinent state information is available
from an agent within the ADS architecrure, it doesn‘t
have to go looking for it elsewhere. The BN Alarm
Correlator produces a list of root cause candidates for a
given subsystem fault that can be used by another DCA
concerned with that particular subsystem, e.g. an ad-hoc
FCM constructed to analyze a particular C&DH problem.
While it is clear that the overall effectiveness of the ADS

can be enhanced by the sharing of certain data products
between DCAs, it is unclear how that knowledge should
be represented and shared within the ADS architecture.
Through what mechanism can agents publish their data
products and subscribe to the pertinent (and perhaps
ephemeral) data products of other agents, dynamically?

An ontology defines the vocabulary with which queries
and assertions are exchanged among agents (DCAs) [I O] .
In this section we present a basic ADS ontology that
describes ontological commitments enabling DCAs to
share data products and gain knowledge about the
environment in which they exist. The presented ontology
is basic because it will evolve over time as the concept of
ADS expands.

A Basic Ontology for the ADS

We could represent shared knowledge within the ADS
using a simple lookup table, but an ontology provides a
much richer set of constructs through which we can
formally describe the semantics of classes and properties
of ADS resources. Furthermore, the ADS ontology can
be updated dynamically by the Diagnostic Data Server to
reflect the data products currently available at a given
point in time.

We use the OWL Web Ontology Language as the basis
for our ADS ontology since it is designed for use by
applications that need to process the content of
information rather than presenting information to humans.
OWL builds on web-based information representation
languages such as XML, Resource Description
Framework (RDF) and RDF Schema (RDF-S) and goes
beyond these languages in its abil i3 to represent
machine-interpretable content on the Web [1 I] .

1 <?xml version=” 1 .O” encoding=”UTF-8” ?>
2 <rdf:RDF
3 xm Ins:rdf=Iittu:l/~vw\v.\\’j .arc/ I 999!02/22rd f-svntax-
- ns#
4 xm Ins: rdfs= h ttu:l/www.w3.o1-d200010 I /rd f-sche rn a#
5 xmlns:dc=htt~://~iirl.or~/dc/elements! I .O/
6 xm 1 ns : ow I=h t t D :llw w w . w 3. o r d 2 00 210 710 w I4
7 xmlns=httu://www.w3 .or~/2002!07/ow I#>
8 <Ontoiogy rdfabout=””>
9 <dc:title>ADS Ontology</dc:title>
10 <dc:creator>IMT Lab</dc:creator>
1 1 <dc:subject>OWL; ADS;</dc:subject>
12 <dc:publisher>Daryl Fletcher<ldc:publisher>

12
ADS ontology publication is lirnlted to a secured intranet and IS nor

generally available on the Web

10

. -
,

1 3 <dc : date>2003 -09-024dc: date>
14 <dc: format>textlxml</dc:format>
I5 <dc:language>en</dc:language>
16 </Ontology>

17 <owl:Class rdf:ID="ADS">
1 8 <label>Advanced Diagnostic System</label>
19 </owl:Class>

20 <owl:Class rdf:ID="DCA">
2 1 4abeDDiagnostic Client Application</label>
22 </owl:Class>

23 <owl:ObjectProperty rdf:ID="Description">
24 <rdfs:domain><ow 1: Class>
25 <owl:unionOf rdfparseType="Collection">
26 <owl:Class rdf:about="#ADS"/>
27 <owl: C lass rdf: about="#DCA "/>
28 </owl:unionOf>
29 </ow 1: C lass></rdfs : domain>
3 0 </ow 1: ObjectProperty>
3 1 <owl:ObjectProperty rdf:ID="Owner">
32 <rdfs:domain><owl:Class>
3 3 <owl:unionOf rdfparseType="Collection">
34 <owl:Class rdf:about="#ADS"/>
3 5 <owl: Class rdf:about="#DCA"h
'36 </owl:unionOf>
3 7 </owl : Class></rdfs: domain
3 8 </ow 1:Obj ectProperty>
39 <owl:ObjectProperty rdf:ID="Contact">
40 <rdfs:domain><owl:Class>
4 1 <owl:unionOf rdf:parseType="Collection">
42 <owl:Class rdEabout="#ADS"/>
43 <owl:Class rdf:about="#DCA"/>
44 </owl:unionOf>
45 </ow l:Class></rdfs: domain>
46 </ow 1: Obj ectProperty>

47
48
49
50
51
52
53
54

5 5
56
51
58

59
60
61

62
63
64

<ow 1: Class rdf:ID="ISS-ADS">
<label>ISS Advanced Diagnostic System4label>
<owl:subClassOf rdf:resource="#ADS" />
<owl:unionOf rdf parseType="Collection">
<owl: C lass rdf: about="#ISS-CDH-DCA"b
<ow 1: Class rdf about="#IS S-EC W-DCA"/>
</owl:unionOf>
</owl:Class>

<owl:Class rdf:!D="ISS-DCA">
<label>ISS Diagnostic Client Application</label>
<owl:subClassOf rdf:resource="#DCA" />
</owl:Class>

<ISS ADS ow1:Class rdf:ID="imt_iss-ads">
<!.b&IMT Lab ISS A-DS<!!abe!>
<Description>
An Advanced Diagnostic System for the International
Space Station under development in the Intelligent
Mobile Technologies Lab at NASA-Ames Research
Center
</Description>
<Owner>Dan Duncavage</Owner>
<Contact>daniel.p.duncavage@nasa.gov</Contact>

65 </ISS-ADS>

66 <owl:Class rdf:ID="ISS-FCM DCA">
67 <owl:subClassOf rdf:resource="fiISS-DCA" />
68 </owl:Class>

69 <ISS-FCM-DCA rdf:ID="fcm-toolkit-dca">
70 <Description>

A core computational engine and set of graphical
tools for modeling complex systems using Fuzzy
Cognitive Maps

7 1 </Description>
72 <Owner>Daryl Fletcher</Owner>
73 <Contact>dpfletcher@rnail.arc.nasa.gov</Contact>
74 <Publishes>
75 <ConceptVector>
76 <ReferenceInformation>
77 <document>FCM Toolkit
User' sManual4documenP
78 </ReferenceInforrnation>
79 <rdfs:comment>

A concept vector consists of a time stamp followed
by a series of comma separated element state
estimations, terminated by a newline.

80 </rdfs:comment>
8 1 <dataProductFormaP
82 <timestamp rdf:datatype="&xsd;dateTime" \>
83 <cdh-health rdf: datatype="&xsd;float" \>
84 <eps-health rdf:datatype="&xsd;float" \>
85 <tcs-health rdf:datatype="&xsd;float" \>
86 </dataProductFormaP
87 <howToSubscribe>
88 <subscriberInstructions>

Send registered user name and password to the
Tollowing host and port along with subscribing
application's IP address and port.

89 </subscriberInstructions>
90 <Host>xxx.xxx.xxx.xxx</Host>
9 1 <Port> 18333</Port>
92 </howToSubscribe>
93 </ConceptVector>
94 </Publishes>
95 </IS S-FCM-DCA>

96 <owl:Class rdf:ID="ISS-ECW-DCA">
97 <owl:subClassOf rdfresource="#DCA" />
98 </owl:Class>

99 <ISS-EC W-DCA rdf:ID="acw-dca">
100 <Description>
101 An Advanced Caution and Warning application that
filters alarms using an Artificial Neural Network and
performs fault correlation using a Bayesian Network.
102 </Description>
103 <Owner>Daryl Fletcher</Owner>
104 <ContacPdpfletcher@mail.arc.nasa.gov4ContacP
105 <Publishes>
106 <rdfs:commenv
107 All time stamps in published products are in IS0
8601 Format: yyyy-mm-dd hh:mm:ss.xxx.
1 OS 4rdfs:commenP
109 <FilteredAlarms>

11

1 10 <ReferenceInformation>
1 1 1 <url>http://www.jsc.nasa.gov/c&w/index.html
112 </url>
1 14 <document>ISS Familiarization</document>
1 15 <document>C&DH Training Manual</document>
1 16 </ReferenceInformation>
1 17 <rdfs:comment>
1 18 Fields within alarm event blocks are separated by
commas. Event blocks are delimited by new lines.
11 9 </rdfs:commenD
120 <dataProductFormat>
12 1 <eventptr rdfdatatype="&xsd;int" \>
122 <logtime rdf:datatype="&xsd;dateTime" \>
123 <dayofyear rdf:datatype="&xsd;int" \>
124 <event rdf:datatype="&xsd;int" \>
125 <alarmtype rdf:datatype="&xsd;string" \>
126 <ackstate rdf:datatype="&xsd;string" \>
127 <eventstate rdf:datatype="&xsd;string" \>
128 <status rdf:datatype="&xsd;int" \>
129 <amstate rdf:datatype="&xsd;string" \>
130 </dataProductFormat>
13 1 <howToSubscribe>
132 <subscriberInstructions>
133 Send registered user name and password to the
following host and port along with subscribing
application's IP address and port.
1 34 </subscriberInstructions>
135 <Host>xxx.xxx.xxx.xxx</Host>
136 <Port>17593</Port>
137 </howToSubscribe>
13 8 </FilteredAlarms>
139 <RootCauseAnalysis>
140 <ReferencelnformationWReferenceInformation>
14 1 <rdfs:comment>
142 A root cause analysis consists of a time stamp
followed by a statement of root cause candidates
terminated by a newline.
143 </rdfs:comment>
144 <dataProductFormaD
145 <timestamp rdf:datatype="&xsd;dateTime">
146 <rootcausecandidates rdf:datatype="&xsd;string">
147 </dataProductFormat>
148 <howToSubscribe>
149 <subscriberInstructions>
150 Send registered user name and password to the
following host and port along with subscribing
application's IP address and port.
15 1 </subscriberInstructions>
152 <Host>xxx.xxx.xxx.xxx</Host>
153 <Port>17594</Port>
154 </howToSubscribe>
155 </RootCauseAnalysis>
156 </ISS-EC W-DCA>
157 </rdf:RIIF>

I

Figure 12: The ADS ontology

Lines 1-1 6-These lines provide the namespace references
and form the header of the ontology.

ADSs, e.g. an International Space Station ADS or an
Orbital Space Plane ADS.

Lines 20-22-As with the ADS, the ontology specifies a
DCA as a base class that can be subclassed to represent
different types of DCAs, e.g. an International Space
Station DCA or an Orbital Space Plane DCA.

Lines 23-46These lines assert that the ADS and DCA
classes have properties associated with them named
Description, Owner and Contact.

Lines 47-54-Define the class ISS-ADS, a subclass of
ADS specific to the International Space Station. The
class is composed of the union of two DCA subclasses,
namely an ISS-CDH-DCA and an ISS-ECW-DCA.
Each of these DCA subclasses can have multiple instances
representing distinct individuals, e.g., there can be several
different ISS-CDH-DCAs within the ISS-ADS, each
having its own identity.

Lines 55-58-Define the class ISS-DCA, a subclass of
DCA specific to the International Space Station. To
easily extend the ADS ontology to another domain such
as the Orbital Space Plane, we would simply define a
class OSP-DCA as another subclass of DCA.

Lines 58-65-Here we introduce an individual instance of
an ISS-ADS named imt-iss-ads. It has a Description,
an Owner and Contact information. We could have
another instance of an ISS-ADS developed by another
group, say group ABC, and name it abc-iss-ads. Then,
using the vocabulary established in the ADS ontology,
knowledge could be shared between multiple ADSs,
similar to the manner in which knowledge is shared
among DCAs.

Lines 66-68-Define the class ISS-FCMDCA, a
subclass of ISS-DCA.

Lines 69-95- Here we introduce an individual instance of
an ISS-FCM-DCA named fcm-toolkit-dca. It has a
Description, an Owner and Contact information, as do all
DCAs and ADSs. Note the <Publishes> section starting
on line 74. Enclosed in this section is specific
information about how this DCA goes about sharing its
knowledge with the world around it. It has one data
product that it wishes to share; a <ConceptVector>.
There is a document included in the
<ReferenceInformation> section that this DCA believes is
relevant to the understanding of its <ConceptVector> data
product. Lines 79-80 contain a comment that is a human-
readable description of the <ConceptVector> format,
while the <dataProductFormat> section in lines 81-86
contains a machine-readable description of the
<ConceptVector> format. The <ConceptVector> consists
of a time stamp and values for the concepts C&DH
health, EPS health and TCS health. The
<howToSubscribe> section in lines 87-92 provides

Lines 17-19-The ontology specifies an ADS as a base
class that can be subclassed to represent different types of

12

* .

information for agents that wish to subscribe to this
particular data p r~duc t ’~ .

Lines 96-98-Defme the class ISS-ECW-DCA, a
subclass of ISS-DCA specific to the Emergency, Caution
and Warning (ECW) System.

Lines 99- ISbHere we introduce an individual instance
of an ISS-ECW-DCA named am-dca. This is the
Advanced Caution and Warning DCA described in this
document. It has a Description, an Owner and Contact
information and publishes two data products:
<FilteredAlarms> and <RootCauseAnalysis>. Note that
the overall ontological structure of am-dca is the same
as that of fcm-toolkit-dca. The acw-dca provides links
to information it believes is important for understanding
its data products, as well as providing information for
potential subscribers. The details of this DCAs data
product descriptions are essentially the same as described
for the fcm-toolkit-dca and are not repeated here.

Line 157-Closes the ADS ontology.

In the ontology presented above, the ADS is a union of
classes that can be easily extended to include multiple
ADSs and even form a hierarchy of ADSs, much like the
“manager-of-managers” hierarchical structure typically
found in large-scale Network Management Systems [121
where one ADS could become a DCA of another ADS.
The hierarchy of ADSs can evolve along with the
evolution of the complex system to which the ADS is
applied; smaller ADSs can be developed in parallel with
the complex system and then integrated to form a
coherent whole while maintaining a consistent
representation of ADS concepts. Using the ADS
ontology, DCAs within an ADS can dynamically
discover and subscribe to ADS resources using standard,
web-based technologies. Our ADS ontology is dynamic,
scalable, extensible, expressive in its conceptualization of
the ADS universe, is easily accessed by distributed agents
and is based on emerging standards easily adopted by
DCA developers.

We present the Dynamic Weaver Framework, an Aspect-
Oriented framework for dynamically weaving aspects such
as logging and security into disparate applications at run-
time. Aspect-Oriented methodology isolates code that
would otherwise be tangled throughout the software
system and separates utility-type aspects &om the core
functional components, allowing research application
deveIopers to focus resources on the research-oriented
components of the system. The Framework takes
advantage of the benefits of Aspect-Oriented
Programming and uses a dynamic proxy for weaving
aspects such as logging and security into the software
system at run-time, providing the systems integrator with
an economical method for bringing lower Technical
Readiness Level (T U) research applications into
operational environments.

The Dynamic Weaver Framework is applied to the
Advanced Diagnostic System, under development at
Ames Research Center, which is composed of a set of
Diagnostic Client Applications developed from multiple
funding sources. While DCAs (agents) have utility as
stand-alone applicarions, they generate knowledge about
the system that can be shared throughout the ADS,
thereby increasing the overall effectiveness of the ADS as
a diagnostic system. To facilitate knowledge sharing and
reuse in the ADS, we present a basic ontology that
defines the vocabulary by which agents can exchange
knowledge within the ADS universe.

Using the Dynamic Weaver Framework to support code
reuse and simplify reconfiguration and the basic ADS
ontology to enhance the effectiveness of the ADS enables
the systems integrator to bring a better software system
into the operational environment at a lower cost.

REFERENCES

[I] D. Bardcu, “Rola, Subjects, and Aspects. How Do
They Relate?,” Position paper, ECOOP ’98 Worhhop on
Aspect-Oriented Programming, July 20-24, 1998.

5. CONCLUSION

This paper presents some of the challenges associated
with bringing software projects from the research world
into an oDerationa1 environment. While the core

[2] L. Berga; M. Dery and M. Fomaino, “Lntmctions
Betwen Objects: An Aspect of Object-Oriented
Langqes ,” Position paper, ECOOP ’98 Workshop on
Aspect-Oriented Programming, July 20-24, 1998.

[3] M. Yuan and N. Richads, “Lightweight Aspect-
Oriented Progmmming,” Dr. DobbS Jourml 351, 18-22,
August 2003.

141 T. Barrett, “Dynmic Proxies in Java and .NET,
Sepmting cross-cutting CO~CB~IS,’’ Dr. Dobb ‘s Journal

fknctional components of research-oriented s o h a r e
applications can have great utility in an operational
setting, these applications often lack aspects important in
an operational environment such as logging and security.
Furthermore, these stand-alone applications, sometimes
developed in isolation fkom one another, can produce data
products useful to other applications in a software
ecosystem. 350, 18-26 July 2003.

13

product subscription information belong to the Diagnostic Data Server.
A DCA publishes only to the DDS; the DDS then publishes to all of the
subscribers, relieving a DCA of the burden of keeping track of all its
subscribers.

[5] C. Lopes and G. Kiczales, “Recent Developments in
In the ADS architecture, the <Host> and <Port> used for DCA data AspectJ,” ECOOP ’98 Workrhop on Asped-Oriented

Programming, July 20-24, 1998.

13

[6] J. Pryor and N. Bastan, “A Reflective Architecture for
the Support of Aspect-Oriented Programming in
Smalltalk,” Position paper, ECOOP ’98 Workshop on
Asped-Oriented Programming, July 20-24, 1998.

[7] B. Bershd, S. Savas, P. Pard@, G. Sirer, M.
Fiucqnski, D. Becka, S. Egges, and C. Chamter,
“Extasibility, Safety and performan’ce in the SPIN
Opersting Systan,” lYh Sympcsium on Operating Systm
Principles, December 3-6, 1995.

[SI J.A. Dickason and B. Kosko, “Virtual Worlds as
Fuzzy Cognitive Maps”, IEEE 1993.

[9] Bart Kosko, “Neural Networks and Fuzzy Systems”,
Prentice Hall, Inc., 1992.

[IO] T. Gruba; “What is an Ontology?,” I i t t D : / / w w w -
ks I .s ta n f‘o rd. ed idks tiw I1 a t- is-a t i -0 ii to Io gv . h t m I

[I I] W3C Candidate Recommendation, “OWL Web
Ontology Overview,” h ttp://www.w3.oro,/TR/owl-features/
, August 18Ih, 2003. Copyright 0 2003 World Wide Web
Conscrtium, (Massachusetts Institute of Technology,
European Reseach Conscxtium for Informatics and
Mathematics, Keio Univasity). All Righb Reserved.
httpdlwww. w3. crg/Consortium/Legal12002/copy1ight-
documents-2002 123 1.

[12] David Perkins and Evan McGinnis, Understanding
SNMP MIBs, Prentice Hall PTR, 1997.

[I31 D. Fletcher, R. Alena, “A Scalable, Out-of-Band
Diagnostics Architecture for International Space Station
Systems Support”, 2003 IEEE Aerospace Conference
Proceedings, March 8-15, 2003.

[14] C.D. Stylios, P.P. Groumpos, “Fuzzy Cognitive
Mapin Modeling Supervisory Control Systems”, Journal
of Intelligent and Fuzzy Systems, Vol. 8, No. 2, pp. 83-
98, 2000.

[IS] Judea Pearl, Probabilistic Reasming in Intelligent
Systems: Netwcrks of Plausible Inference, Morgm
Kauhann Publishers, Inc., 1988.

[I61 R. Stemtt, A.H. Marshll, C.M. Shapcott, S.1.
McClean, “Exploring Dynamic Bayesian Belid Networks
for Intelligent Fault Management Systans”, Proc. IEEE
Int. Con/ Systms, Man and Cybernetics, V, pp. 3646-
3652, Sept. 2000.

systems development for aviation meteorology and
development of Network Management Systems for data
and voice networks. His research interests include
applications of computational intelligence for the
modeling, diagnosis and prognosis of complex systems.
Prior to joining SAIC, he was a software developer at
the National Center for Atmospheric Research in
Boulder, CO. and a consultant to Lucent Technologies
and Level(3) Communications, Inc.

Faisal Akkawi, whose area is software architecture for
concurrent systems, has been on the faculty of Illinois
Institute of Technology from 1998 to 2002. Currently he
is an adjunct Faculty in the Department of Computer
Science at Northwestern University. His research
interests include sofmare architecture for concurrent
software systems, reactiveladaptive intelligent systems
and design issues of concurrent programming languages.

Richard Alena is a Computer Engineer and the Group
Lead for the Intelligent Mobile Technologies (I-MT) Lab
and the Mobile Exploration System (MEX) testbed at
NASA Ames Research Center. The IMT team integrates
mobile hardware and software components into unique
systems capable of extending human performance aboard
spacecrafl during flight and payload operations. He was
principal investigator for the Wireless Network
Experiment flown aboard Shuttle and Mir, technology
later adopted by the International Space Station
Program. Rick spent three summers in the Canadian
Arctic developing mobile technologies for human i

1
University of California, Berkeley.

Daniel Duncavage joined the International Space Station
team as a civil servant at Johnson Space Center ajier
completing his BSME and MSME at Northeastern
University in 1994. A f e r almost five years working with
the Russian Space Agency handling management issues
concerning the US research work being performed on the
Russian Mir space station, Mr. Duncavage moved to the
ISS Avionics Office to improve onboard diagnostics. The
first set of tools he brought to the Station were employed
to save the Control Moment Gyros on ISS Flight 3A.
This success lead to the expansion of the effort that
evolved into the Advanced Diagnostic Systems R&D
project, led bY Mr . Duncavage.

planetary exploration. He has a MSEE&CS from

Daryl Fletcher received his B.S. degree in Applied
Mathematics in 1993 and an M.S. degree in Engineering
in 1995 from the University of Colorado-Boulder and is
currently a Ph.D. student in Computer Science at the
University of Colorado-Denver. His background is in

14

